
Section 4-Lecture 10

Files and Streams, Creating a Sequential Access File,
Reading Data From A Sequential

Access File, Updating Sequential Access Files,
Random Access Files, Creating A Random

Access File, Writing Data Randomly To a Random
Access File, Reading Data Sequentially

from a Random Access File. Stream Input/Output
Classes and Objects, Stream Output,

Stream Input, Unformatted I/O (with read and
write), Stream Manipulators, Stream Format

States, Stream Error States.

Introduction Introduction
• Computer programs are associated to work with

files as it helps in storing data & information
permanently.

• File - itself a bunch of bytes stored on some
storage devices.

• In C++ this is achieved through a component
header file called fstreamfstream..hh

• The I/O library manages two aspects- as interface
and for transfer of data.

• The library predefine a set of operations for all file
related handling through certain classes.

All rights reserved 3

Streams act as an interface between files and programs.
They represent as a sequence of bytes and deals with
the flow of data.
Every stream is associated with a class having member
functions and operations for a particular kind of data
flow.

File Program (Input stream) - reads
Program File (Output stream) – write

All designed into fstream.h and hence needs to be
included in all file handling programs.
Diagrammatically as shown in next slide

All rights reserved 5

File Handling Classes
Hierarchy Diagram

All rights reserved 7

ios

streambuf ostreamistream

iostream

fstream

filebuf

ofstreamifstream

fstreambase

•Convenient way to deal large quantities of data.
•Store data permanently (until file is deleted).
•Avoid typing data into program multiple times.
•Share data between programs.
We need to know:

how to "connect" file to program
how to tell the program to read data
how to tell the program to write data
error checking and handling EOF

All rights reserved 9

// Initial experience reading and writing files
#include <fstream.h>
#include <iostream.h>
#include <stdlib.h>
int main()
{ ifstream in_stream;
ofstream out_stream;
int num;
in_stream.open("numbers.dat");
if (in_stream.fail()) { cout << "Input file could not be opened.\n";

exit(1); }
out_stream.open("squares.dat");
if (out_stream.fail()) { cout <<"Output file could not opened.\n";

exit(1); }
in_stream >> num;
out_stream << "The square of " << num << " is " <<num * num;
in_stream.close();
out_stream.close();

}

File Handling Classes
•• When working with files in C++, the following When working with files in C++, the following

classes can be used:classes can be used:
– ofstream – writing to a file
– ifstream – reading for a file

– fstream – reading / writing
•• What does it all have to do with cout?What does it all have to do with cout?

– When ever we include <iostream.h>, an ostream
object, pointing to stdout is automatically defined –
this object is cout.

• ofstream inherits from the class ostream
(standard output class).

• ostream overloaded the operator >> for standard
output.…thus an ofstream object can
use methods and operators defined in
ostream.

Opening & Closing a FileOpening & Closing a FileOpening & Closing a FileOpening & Closing a File
 A file can be open by the method “open()” or A file can be open by the method “open()” or

immediately in the constructor (the immediately in the constructor (the naturalnatural and and
preferred way).preferred way).

streamstream--object.openobject.open(“filename”, mode);(“filename”, mode);

 filename filename –– file to open (full path or local)file to open (full path or local)
mode mode –– purpose for which file is opened.purpose for which file is opened.

iosios::app ::app –– appendappend
iosios::ate ::ate –– open with marker at the end of the fileopen with marker at the end of the file
iosios::in / ::in / iosios::out ::out –– (the defaults of (the defaults of ifstreamifstream and and ofstreamofstream))
ios:nocreateios:nocreate / / iosios::::noreplacenoreplace –– open only if the file exists open only if the file exists

/ doesn’t exist/ doesn’t exist
iosios::::trunctrunc –– open an empty fileopen an empty file
iosios::binary ::binary –– open a binary file (default is textual)open a binary file (default is textual)

 Don’t forget to close the file using the method Don’t forget to close the file using the method
“close()”“close()”

class default mode parameter
 Each one of the open() member functions of the

classes ofstream, ifstream and fstream has a default
mode that is used if the file is opened without a
second argument:

class default mode parameter
 Ofstream ios::out
 Ifstream ios::in
 Fstream ios::in | ios::out

All rights reserved 12

•In C++, file stream classes inherit a stream state member
from the ios class, which gives out the information

regarding the status of the stream.
For e.g.:bad()Returns true if a reading or writing operation
fails.
For example in the case that we try to write to a file that is
not open for writing or if the device where we try to write
has no space left.
fail()Returns true in the same cases as bad(), but also in the
case that a format error happens, like when an alphabetical
character is extracted when we are trying to read an integer
number.
eof()Returns true if a file open for reading has reached the
end.
good()It is the most generic state flag: it returns false in the
same cases in which calling any of the previous functions
would return true.

int main()
{
Int SIZE=80;
Char line[SIZE];
Ifstream fin;
Fin.open(“country”);
For(i=0;i<=10;i++)
{
if(fin.eof()!=0) //fin return 0 on reaching end of file
{ exit(1);

Note:eof() is a function of ios class.

fin.getline(line,SIZE);
} //end

Output:-
India
UK
London

TheThe followingfollowing membermember functionsfunctions areare usedused forfor readingreading andand writingwriting
aa charactercharacter fromfrom aa specifiedspecified filefile..
get()get()-- isis usedused toto readread anan alphanumericalphanumeric charactercharacter fromfrom aa texttext filefile..
--MemberMember ofof istreamistream..hh

--Read()Read()--usedused toto handlehandle aa singlesingle charactercharacter forfor inputinput fromfrom binarybinary
filefile..
----MemberMember ofof istreamistream..hh

--write()write()--usedused toto handlehandle aa singlesingle charactercharacter forfor outputoutput toto binarybinary filefile..
--MemberMember ofof ostreamostream..hh

put()put()-- isis usedused toto writewrite aa charactercharacter toto aa texttext filefile
-- MemberMember ofof ostreamostream..hh

Text file
 Text file streams are those where we do not include

the ios::binary flag in their opening mode. These files are
designed to store text and thus all values that we input or
output from/to them can suffer some formatting
transformations, which do not necessarily correspond to
their literal binary value.

Data output operations on text files are performed in the
same way we operated with cout:

All rights reserved 16

writing on a text file
#include <iostream>
#include <fstream>
using namespace std;
int main ()
{
ofstream myfile ("example.txt");
if (myfile.is_open())
{
myfile << "This is a line.\n";
myfile << "This is another line.\n";
myfile.close();
}
else
cout << "Unable to open file"; return 0;
}

All rights reserved 17

[file example.txt]
This is a line.
This is another line.

reading a text file
#include <iostream.h>
#include <fstream.h>
#include <string.h>
using namespace std;
int main ()
{
string line;
ifstream myfile ("example.txt");
if (myfile.is_open())
{
while (myfile.good())
{
getline (myfile,line);
cout << line << endl;
}
myfile.close();
}
else cout << "Unable to open file";
return 0;
}

All rights reserved 18

This is a line.
This is another line.

get and put stream pointers

 All i/o streams objects have, at least, one internal stream pointer:

ifstream, like istream, has a pointer known as the get pointer that points to the
element to be read in the next input operation.

ofstream, like ostream, has a pointer known as the put pointer that points to
the location where the next element has to be written.

Finally, fstream, inherits both, the get and the put pointers,
from iostream (which is itself derived from bothistream and ostream).

All rights reserved 19

1 Input pointer(get pointer)
2 Output pointer(put pointer)

H E L L O W O R L D

H E L L O W O R L D

OPEN FOR
WRITING

OPEN IN
APPEND
MODE

OPEN FOR
READING

INPUT POINTER

OUTPUT
POINTER

OUTPUT
POINTER

Functions for manipulation of file
pointers

 Seekg()- moves get pointer (input) to a specified location.
 Seekp()- moves put pointer (output) to a specified location.
 Tellg()-gives the current position of the get pointer.
 Tellp()- gives the current position of the put pointer.

For example- infile.seekg(10);
Moves the file pointer to byte no. 10.and the pointer will be now pointed

to the 11th byte in a file,becuse Bytes in a file are numbered beginning
from zero.

What is the output:
Ofstream fileout;
Fileout.open(“hello”,ios::app);
Int p=fileout.tellp();

All rights reserved 21

Specify the offset
 Seekg(offset,reposition);
 Seekp(offset,reposition);

offset represents no.of bytes the file pointer is to be
moved from the location specified by the parameter
“reposition”

Reposition takes 3 constants defined in ios class:
 Ios::beg start of file
 Ios::cur current position of the pointer
 Ios::end end of the file

All rights reserved 22

Obtaining file size
 #include <iostream>
 #include <fstream>
 using namespace std;
 int main ()
 {
 long begin,end;
 ifstream myfile ("example.txt");
 begin = myfile.tellg();
 myfile.seekg (0, ios::end); //go to end of file
 end = myfile.tellg();
 myfile.close();
 cout << "size is: " << (end-begin) << " bytes.\n";
 return 0;
 }

All rights reserved 23

size is: 40 bytes.

Bytes in a file are numbered begning from zero

Binary files

 In binary files, to input and output data with the extraction and insertion
operators (<< and >>) and functions like getline is not efficient, since we
do not need to format any data, and data may not use the separation codes
used by text files to separate elements (like space, newline, etc...).

File streams include two member functions specifically designed to input
and output binary data sequentially: write and read. The first one (write) is
a member function of ostream inherited by ofstream. And read is a
member function of istream that is inherited by ifstream. Objects of
class fstream have both members. Their prototypes are:

write (memory_block, size);
read (memory_block, size);

Where memory_block is of type "pointer to char" (char*), and represents
the address of an array of bytes where the read data elements are stored or
from where the data elements to be written are taken. The size parameter is
an integer value that specifies the number of characters to be read or
written from/to the memory block.

All rights reserved 24

// reading a complete binary file

 #include <iostream>
 #include <fstream>
 using namespace std;
 ifstream::pos_type size;
 char * memblock;
 int main ()
 {
 ifstream file ("example.bin", ios::in|ios::binary|ios::ate);
 if (file.is_open())
 { size = file.tellg();
 memblock = new char [size];
 file.seekg (0, ios::beg);
 file.read (memblock, size);
 file.close();
 cout << "the complete file content is in memory";
 delete[] memblock;
 }
 else
 cout << "Unable to open file";
 return 0;
 }

All rights reserved 25

the complete file
content is in memory

Reading /Writing from/to Binary
Files
• To write n bytes:

– write (const unsigned char* buffer, int n);
• To read n bytes (to a pre-allocated buffer):

– read (unsighed char* buffer, int num)

#include <fstream.h>
main()
{

int array[] = {10,23,3,7,9,11,253};
ofstream OutBinaryFile("my_b_file.txt“, ios::out |

ios::binary);
OutBinaryFile.write((char*) array, sizeof(array));

OutBinaryFile.close();
}

